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1. Introduction 
 
Aquaculture is predominantly found on land, in inland waterbodies and in the inshore to 
coastal environment. Water quality and temperature observations from satellites fulfil an 
important role in monitoring the aquatic environment, including the suitability for specific 
aquaculture activities and their potential impacts on their immediate environment.  
 
This report presents a number of state-of-the-art approaches to using the latest generation 
of ocean colour sensors for water quality monitoring in environments relevant to aquaculture. 
Due to proximity to land, these waters are classified as optically complex, implying that the 
interpretation of water colour in terms of optical-biogeochemical substance concentrations 
is subject to ambiguity (the same colour can be interpreted in different ways). In addition, 
proximity to land adds uncertainty in the separation of water and atmospheric optical 
conditions, as well as disturbance of the water-leaving radiance signal by optically shallow 
(bottom visibility) and highly variable water surface conditions (waves and surf). The 
methodologies presented here are designed, to an extent, to overcome and/or recognize 
such conditions. 
 
The methodologies that were optimized during TAPAS are described in the following sections, 
including aggregate maps of optical conditions and results for specific farm-scale case studies.  
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2. Regional tuning of TSM and Chl algorithms in Bourgneuf Bay, France 

(University of Nantes) 
 

2.1. Background  

The results presented here were published in the open access journal Frontiers in marine 

sciences, in the frame of the research topic “Remote Sensing for Aquaculture”: 

https://www.frontiersin.org/research-topics/9293/remote-sensing-for-aquaculture 

Bourgneuf Bay is a 340 km2 macrotidal embayment located on the French Atlantic coast. 

There are currently 283 mainly small oyster farms occupying leases over approximately 10% 

of the 100 km2 intertidal zone, producing Pacific oysters (Crassostrea gigas). Expanding 

production to the offshore environment has been of interest to Bourgneuf Bay farmers for 

some time now, as there is no more room to expand in the intertidal zone. Aquaculture is not 

necessarily feasible everywhere, however, and appropriate site selection for new farms is key 

to their success and sustainability. Several socioeconomic and environmental constraints 

need to be considered as part of spatial multi-criteria evaluation and marine spatial planning 

endeavors (Falconer et al., 2019). The biological growth potential for a given species is a key 

factor for site selection and is expected to vary spatially as a result of changes in 

environmental factors such total suspended matter (TSM) and chlorophyll-a (Chl) 

concentration. 

In Bourgneuf Bay, strong spatial gradients in these parameters turbidity of the water column 

have been observed, with highly turbid conditions (TSM typically up to more than 300 g m-3) 

in the intertidal zone related to tidal- and wind-driven resuspension of surface sediment at 

shallower water depths, and relatively clear conditions offshore (TSM generally < 60 g m-3). 

Chl concentration in Bourgneuf Bay has also been reported to span several orders of 

magnitude, and typically ranges from < 5 mg m-3 offshore to > 10 mg m-3 in the intertidal zone 

(Gernez et al., 2017).  

This section presents the TSM and Chl regional algorithms specifically developed and 

validated for Bourgneuf Bay. The associated EO-derived maps were then coupled with oyster 

physiological modelling to provide insight into the spatiotemporal variability underlying the 

biological potential, and thereby inform site selection for offshore oyster aquaculture in 

Bourgneuf Bay (Palmer et al., accepted). 

 

2.2. Algorithm calibration and validation 

The TSM and Chl algorithms were developed using in situ datasets (Palmer et al., accepted). 

A total of 46 and 62 matchups were eventually available for the calibration and validation of 

the TSM and Chl algorithms, respectively.  The algorithms were developed for the ESA 

MEdium Resolution Imaging spectrometer (MERIS). Although more recent satellite data are 

available (i.e. Sentinel3 from 2015), these do not coincide with the in situ data (2005 - 2006) 

https://www.frontiersin.org/research-topics/9293/remote-sensing-for-aquaculture#articles
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needed for algorithm validation. MERIS data from 2003-2011 were therefore used here. The 

Full Resolution MERIS data were processed by PML using the Calimnos processing chain, 

which is designed to dynamically resolve optical water quality parameters in a variety of 

optically complex inland waters (Simis et al., 2018). Version 1.21 of the processing chain was 

applied to the 1934 Level 1B FR images available for our site from the period 2003-2011, 

including Polymer atmospheric correction with a mineral absorption model, the removal of 

flagged invalid and suspect pixels, and the application of Chl and TSM retrieval algorithms to 

obtain L2 products. The MERIS Chl and TSM products available through Calimnos and tuned 

to lake optical properties according to the water types described by Spyrakos et al. (2018) 

were not found to adequately match the concentrations measured in situ at our site, but 

several had robust linear relationships with the in situ data. We therefore recalibrated these 

algorithms for Bourgneuf Bay to improve confidence in the results and applied the 

recalibrated algorithms to the full time series of interest (Figure 1). The overall best 

performing algorithms for the detection of in-water constituents including both offshore and 

intertidal matchups (highest coefficient of determination, R2, for model fit) were OC2 

(O'Reilly et al., 2000) for Chl retrieval, which is a fourth-order polynomial relationship 

between the ratio of the MERIS band centered at 490 nm to that centered at 560 nm and Chl, 

and the Binding et al. (2010) algorithm for TSM, which uses the MERIS band centered at 754 

nm in semi-analytical inverse modelling. Recalibration and validation of Chl and TSM retrieval 

algorithms was carried out by splitting the in situ data set into two groups at random; one 

(70%) to determine the tuning coefficients (i.e., recalibration) and the other (30%) to assess 

how accurately the tuned algorithm retrieved the absolute concentrations (i.e., validation). 
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Figure 1: Recalibration (a, c) and validation (b, d) of MERIS OC2 Chl-a (a, b) and Binding et al. (2010) TSM (c, d) 

retrieval algorithms (from Palmer et al., accepted). 

 

2.3. Conclusion from the regional approach 

As the Ocean Land Colour Instrument (OLCI) onboard Sentinel 3 has been designed to provide 

a consistent continuity with MERIS, the algorithms developed here for MERIS would similarly 

apply to Sentinel 3. While simple regional tuning of EO observations can provide accurate TSM 

and Chl products for aquaculture applications, as demonstrated here in Bourgneuf Bay, the 

validity of such an approach depends on the existence of in situ data and is restricted to the 

conditions encountered in the in situ measurements. In the next section, a more generalized 

framework is presented for the provision of more globally valid products. 
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3. Calimnos coastal water quality and optical typology (PML) 

3.1. Background 

The Calimnos processing chain was initially developed for the UK-based GloboLakes project, 
in turn based on the first global inland waterbodies processing chain using a comprehensive 
library of algorithms and resultant products in the ESA Diversity-2 project. These processing 
chains were built to process archived ENVISAT-MERIS data at full resolution (300m).  
 
Calimnos is a versatile processing environment capable of handling Sentinel-3 OLCI, Sentinel-
2 MSI, Aqua-MODIS and Envisat-MERIS satellite data. It can be run on data archives to 
produce time-series, or in operational mode in a high-performance computing environment. 
It is presently used to deliver the Copernicus Land Monitoring Service (CLMS) – Lake water 
quality products (LWLR, Turbidity, Trophic State Index) at 10-day aggregation intervals, and it 
is also the processing environment for the Lakes Essential Climate Variable Lake-water-leaving 
reflectance (LWLR) generated in the ESA Climate Change Initiative. In this configuration it uses 
a set of algorithms optimised to retrieve water-column properties in a wide range of lakes.  
 
Within TAPAS an algorithm configuration was developed for water quality retrieval in coastal 
seas. Part of this work focused on using the high-resolution Sentinel-2 MSI sensor and aligning 
its retrieval with coincident observations from the ocean colour sensor OLCI onboard 
Sentinel-3, to ultimately arrive at seamless integration from inshore (requiring high resolution 
observation) to offshore environments (requiring higher radiometric sensitivity offered by 
ocean colour sensors). The remaining work, described in the current report, is concerned with 
optimising Calimnos for coastal areas. New elements are (1) the determination of coastal 
optical water types, to which (individually calibrated) constituent retrieval algorithms are 
mapped, and (2) optimized retrieval of Turbidity across these optical water types.  
 
It should be noted that Calimnos is a processing chain with multiple processing stages and 
algorithms, described in documents referred to in the following sections. The algorithms that 
form the core of atmospheric correction and retrieval of water column optical properties are 
based on published literature whereas algorithm-specific tuning and their assignment to 
specific optical water types is unique to Calimnos. 
 

3.2. Algorithm overview 

Calimnos combines data discovery, subsetting by target area (individual water bodies), 
radiometric and atmospheric corrections, pixel identification (land/cloud/water/ice), optical 
water type classification, individual algorithms (per parameter and water type), algorithm 
blending, conversion and aggregation into a single processing chain. 

A schematic overview of Calimnos is given in Figure 1. The main processing stages and their 
corresponding algorithms are given below.  
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Figure 2: Schematic overview of the Calimnos processing chain. 

To produce Lake Water-Leaving Reflectance: 

- Data discovery. Following download of new satellite passes at L1B these are entered into a 

geospatial database. Target regions are similarly specified in a geospatial database and 

satellite products which overlap any of the target regions are queued for processing. In the 

context of re-processing, any duplicate passes are removed. The procedure relies on in-house 

python scripts and postgres database functionality.  

- Subsetting. For best processing performance, satellite passes are subsetted to bounding boxes 

around each target area. The subsetting routine is part of the SNAP toolbox, called through 

the Graph Processing Tool (GPT). 

- Radiometric corrections. Any radiometric (‘gain’) corrections defined following the release 

of the data are applied to the L1B imagery before submitting the data to atmospheric 

correction.  

- Pixel identification. The Idepix neural network routine is applied for initial pixel 

identification as water, land, cloud/haze, or snow/ice. Idepix is called through SNAP using 

the GPT. Pixel identification masks are stored for later masking of invalid (non-water) pixels.  

- Atmospheric correction. POLYMER is applied to the corrected L1B data of MERIS and OLCI 

sensors and yields water-leaving reflectance wavebands. The outputs are fully normalized 

water-leaving reflectance per waveband. POLYMER is called using a function wrapper in 

Python.  

To produce derived water-column properties: 

- Optical water type classification. An optical water type (OWT) classification for coastal 

waters was developed under projects TAPAS and Orsect (Loveday et al. in prep). Distance 

metrics between the atmospherically corrected observation and each water type are 

generated for each pixel. 

- Algorithm mapping and blending. For each OWT a best-performing algorithm (see section 4) 

is mapped. The algorithms results are then blended using a scaled-weighted averaging 

function.  
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Aggregation: 

- Aggregation is done first per or satellite scene of interest for the desired time period. The 

products are simultaneously reprojected to a planetary lat/lon grid.   

- Mosaicking. For larger areas, individual satellite scenes are mosaicked after temporal 

aggregation. For smaller areas, mosaicking can be combined with temporal aggregation. 

 

3.3. Specific algorithms for Calimnos for coastal water quality 

3.3.1. General considerations 

The following general considerations guided the algorithm selection for coastal waters: 

- Calimnos is able to accommodate multiple atmospheric correction approaches. Recent 

analyses suggest that two approaches would be appropriate for OLCI retrievals in coastal 

waters (Mograne et al., 2019); the Case 2 regional coast colour neural network (C2RCC, 

Brockmann et al., 2016) alternative neural network (ANN) and the HyGEOS Polymer algorithm 

(Steinmetz et al., 2011). The ANN implementation of the C2RCC algorithm was not available 

at the start of TAPAS (only being introduced in 2019) while Polymer allows retrieval under 

sun-glint areas, a particular issue in the case of MERIS data, which was used extensively for 

matchup extraction in support of algorithm tuning. Consequently, Polymer was selected. 

- We implement the options to include mineral absorption (available in the recent version of 

Polymer), as it improved the capacity of the bio-optical model to effect retrievals in turbid 

coastal environments (Jin et al., 2019), which was confirmed in the TAPAS case study site of 

Bourgneuf Bay. 

- System vicarious calibration (SVC) gains were applied to remote sensing reflectance retrieved 

by OLCI-A. Similar gain corrections are not yet available for OLCI-B, so SVC gains are set to 

1. Ongoing analysis of the radiometric performance of OLCI-B suggests that its behaviour is 

more similar to MERIS (the reference sensor) than OLCI-A. However, this is expected to 

introduce a bias on OLCI-B retrievals. 

 

TAPAS exploits data from two ocean colour sensors; the Medium Resolution Imaging 
Spectrometer (MERIS), which flew aboard ENVISAT from 2002 to 2012, and its antecedent, 
the Ocean and Land Colour Instrument (OLCI), which is currently in operations aboard on the 
Copernicus Sentinel-3A (since 2016) and Sentinel-3B (since 2018). While there are other 
ocean colour sensors in operations (e.g. MODIS, VIIRS) and some optical sensors designed for 
land but with developing coastal applications (Landsat-8, Sentinel-2 MSI), OLCI offers the 
optimum combination of medium spatial resolution (300 m), high spectral resolution (21 
bands), narrow spectral band width (typically 10 nm), optimized signal to noise, and frequent 
revisit times (~twice per day) required for coastal ocean applications. 

Plymouth Marine Laboratory (PML) operationally downloads the entire OLCI Level-1B near-
real time and non-time-critical full resolution (300 m) archive for Sentinel-3A and 3B. In 
addition, PML keeps a full archive of the full resolution (300 m) MERIS Level-1B catalogue with 
corrected latitude and longitude bands generated through the AMORGOS software. 
Downloaded data are described in a geospatial database to support spatial queries and 
calculation of relevant overpasses for a given target area. 

3.3.2. Pixel identification 

The cloud detection function of the Idepix algorithm developed by Brockmann Consult was 
used in several processing chains, e.g. those used in CoastColour L1P and Diversity II. 
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Meanwhile many steps of the Idepix algorithm are included in the upcoming MERIS 4th 
reprocessing as standard algorithm by ESA. Due to the good performance of Idepix cloud 
screening in these applications, it is also selected for Calimnos. Idepix is based on a cloud 
probability derived from a neural net which has been trained with >60,000 manually classified 
pixels and which is combined with a number of additional tests on e.g. brightness, whiteness, 
glint. After clouds have been identified, a buffer can be defined in order to provide for a safety 
margin along cloud borders. This buffer radius (in pixel) can be parameterized and is set to 2 
pixels.  

Validation is performed by applying the PixBox Validation, a procedure where manually 
selected pixels are categorized to different categories and characterized with expert 
knowledge, e.g. to clear land, clear water, totally cloudy, semi-transparent cloud, cloud 
shadow, snow/ice, etc. A set of 17k MERIS FR pixels was collected in the scope of the 
CoastColour project, and detailed validation results are provided in the corresponding report 
(Ruescas et al., 2014).  

Retrieval of water quality parameters is also strongly influenced by the occurrence of cloud 
shadow, which need to be identified and eliminated from further processing. Potential cloud 
shadow areas are identified by the geometry of the sun angle, viewing angle and the cloud 
height and the cloud bottom. The cloud height is gained by either the pressure or the 
temperature, but if this information is missing (not all sensors offer the respective bands), a 
maximum cloud height needs to be defined. The most difficult prediction is the height of the 
cloud base as it is not seen by the sensor. In Idepix it is defined as the minimum cloud height 
detected within the respective cloud minus an offset. The basis of cloud shadow detection is 
reliable cloud detection. Validation of the cloud shadow detection is done by visual inspection 
of different images under different conditions (cloud types and geometries). 

In general, the most progressive combination of available cloud masks is selected, favouring 
accuracy over observation coverage.  

Configuration:  Idepix.Sentinel3.Olci v1.0 

3.3.3. Atmospheric correction 

POLYMER v4.12 is the latest version of an atmospheric correction processor initially designed 
to resolve water-leaving reflectance in clear ocean (case-1) waters including areas affected by 
sun glint (Steinmetz et al. 2011). The versatility of the processor to deal with bright waters 
has tested positively with a variety of optically complex (including inland) waters compared 
to alternative processors (Qin et al. 2017, Warren et al. 2019), although systematic under-
estimation of reflectance is evident in inland waters and overestimation of short wavebands 
is common. POLYMER applies a spectral optimization based on bio-optical model in 
conjunction with radiative transfer models to separate atmospheric (including glint) and 
water reflectance. The principle of the algorithm is a spectral matching method using a 
polynomial to model the spectral reflectance of the atmosphere and sun glint, and a bio-
optical forward reflectance model for the water part. The algorithm uses the full set of 
wavebands available (user-configurable) as opposed to alternative ocean-colour methods 
that primarily extrapolate from near infra-red bands. The output is the fully normalized water-
leaving reflectance per waveband. 

Configuration: 
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- POLYMER according to Steinmetz et al. (2011), updated in Steinmetz (2016 and 2018), 

parameterized to use the Park and Ruddick (2005) bidirectional reflectance distribution 

function and operating only on pixels identified as water by the Idepix module (masks 

generated by POLYMER are not used). Starting conditions for the optimization procedure are 

set to chlorophyll-a = 1 mg m-3 and total suspended matter = 1 g m-3. For the coastal seas 

configuration, a mineral absorption component included in the bio-optical model.  

 

3.4. Specific algorithms for derived water quality products 

3.4.1. Optical water type (OWT) membership – overview 

The OWT classification module in Calimnos was written at PML based on the work of Moore 
et al. (2001) and equivalent software developed for ESA Ocean Colour cci. Calimnos can be 
configured with an OWT set for lakes, defined in the GloboLakes project by the University of 
Stirling (Spyrakos et al. 2018), or it can use the new coastal OWT set described in the next 
section. In contrast to OWT mapping used in earlier versions of Calimnos, the spectral angle 
(Kruse et al. 1993) rather than Mahalonobis distance is selected as metric for similarity 
between spectra. The spectral angle is here defined over a range of 0 to 1 where 1 implies 
identical spectra.  

3.4.2. Generating a coastal optical water typology 

Optical water typing allows for images to be classified according to some spectral parameter, 
such as spectral shape (Moore et al., 2009). However, this method is contingent on the 
existence of a library of pre-existing representative spectra, associated with the optical water 
types (OWT). While OWTs can be generated from in situ data (e.g. in Spyrakos et al., 2018) 
these types are not necessarily directly applicable to remote sensing sources. Alternative 
approaches using remote sensing spectra have been developed within the context of the OC-
CCI programme (Jackson et al., 2017), but not to accommodate the full optical variability in 
coastal waters. The approach here is to extend this approach to coastal context, using a fuzzy 
classifier to iteratively identify the dominant clusters associated with the representative 
spectra. 

 

 
Figure 3: Construction and filtering of the initial image library. 

The training dataset benefits from the inclusion of a global sampling of spectral variability. 
Consequently, OLCI-A and MERIS data were extracted over specific sites, representing this 
variability, as shown in Figure 4. These regions capture a diverse selection of turbid conditions 
(e.g. the North Sea, Amazon outflow and Yellow Sea), biologically active sites (e.g. Benguela 
upwelling, Great Lakes, Baltic Sea), open ocean (e.g. Hawaii and Bermuda) and polar 
conditions. One year of MERIS and one year of OLCI-A were extracted and processed for each 
of these sites, and filtered according to Figure 3. 



 
 
 This project has received funding from the EU 

H2020 research and innovation programme 
under Grant Agreement No 678396 

13 / 27 

 

 
Figure 4: Regions used to construct the spectral library for optical water type determination. Areas were selected due 

to presence of unique spectral signatures associated with high suspended sediment concentrations, the occurrence of 

specific algal species, or both. Selected areas include: the Amazon outflow, the Labrador Sea, Hawaii (HOTS), Bermuda 

(BATS), the Great Lakes, the Benguela, Kerguelin, the Red Sea, the Gulf of Oman, the Yellow Sea, the Bay of Bengal, 

the Yellow Sea, the Black Sea, the Caspian Sea, the Mediterranean Sea, the North Sea, the Baltic Sea, the White Sea, 

the Florida Coast, the California Coast and the New Zealand Coast. 

 

 
Figure 5: Schematic of the optimisation system used to iteratively classify the spectral library into representative 

spectra corresponding to the optical water types. 

The filtered image library contains over two billion atmospherically corrected water-leaving 
radiance reflectance spectra. Performing a cluster analysis on such a large multi-channel 
dataset is not feasible, so an iterative approach is introduced to identify clusters (Figure 5). 
This approach begins with a selection of spectra from a randomly selected subset of images. 
To emphasize coastal variability, pixels nearer the coast are given a stronger selection 
weighting while rejecting pixels immediately adjacent to land (where possible, as cloud may 
impact the ability to test this criterion). The following bands are used in the cluster analysis:  
412.5 nm, 442 nm, 490 nm, 510 nm, 560 nm, 620 nm, 665 nm, 681 nm, 709 nm, 765 nm, 778 
nm, 865 nm, 885 nm, 900 nm. 

After the initial library is instantiated it is subjected to a fuzzy cluster analysis, using a 
combination of the Xie-Beni index and Modified Partition Coefficient to identify the optimal 
clustering. The top 100,000 library spectra that best correspond to each representative 
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cluster type are then stored while all other spectra are discarded. Subsequently, the next n-
images (with n=10, typically) are assessed against the cluster types using spectral angle as the 
comparative metric. Spectra that poorly match the existing database are retained, provided 
they satisfy quality control requirements that preclude extreme, likely non-physical, 
reflectances. The resulting spectral library is then reclassified and the same retention/discard 
criteria are applied. This process is repeated until the number of clusters and cluster scores 
converge (Figure 6). This process takes typically four hours to assess ~ 1000 images. Given the 
random nature of the initial library selection, and the propensity of clustering approaches to 
be highly subject to initial conditions, the process was repeated several times to ensure that 
the final set of clusters was robust. 

 

 
Figure 6: Convergence of the optical water type cluster algorithm. 

The spectral library consistently converged on 12 clusters with representative spectra shown 
in Figure 7. Each of these representative spectra is assigned a numeric optical water type. 
These optical water types form the basis of the partitioning used to under-pin algorithm 
selection and blending in the TAPAS products. 

To test the veracity of the clustering approach two further tests were conducted. In the first 
test, the iterative clustering approach was applied to a synthetic spectral library constructed 
only of randomly distributed instances of each of the 12 representative spectra. The clustering 
approach correctly retrieved all 12 classes. Next, systematic noise was added to the synthetic 
spectral library to determine how resilient the approach may be to small scale signals. The 
clustering proved resilient up the point that the signal to noise ratio reached approximately 
2:1. 

As the optical water types are derived from remotely sensed spectra rather than in situ 
observations, it is not possible to directly attribute the classes to water-column properties. 
Attribution requires an independent data set of in situ measurements of optically active water 
constituent concentrations and/or inherent optical properties. For the time being, based on 
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spectral shape the spectra and their spatial distribution, Table 1 gives a suggested qualitative 
interpretation of how the most common types relate to optical-biogeochemical conditions.  

 

 
Figure 7: The representative spectra corresponding to the optical water types. The spectra are shown as normalised. 

 
Table 1: Qualitative interpretation of the representative spectra associated with the optical water types prevalent in 

UK waters. Shading matches the relevant spectral colour in Figure 7 

Optical water type Qualitative interpretation 

1 Clear blue waters 

2 Blue/transitional waters; slightly increased scattering 

6 Coastal scattering 

9 Strong coastal scattering 

10 Very strong coastal scattering 

11 Extremely strong coastal/estuarine scattering 

12 High NIR, likely affected by adjacent land 

 

Examples of the spatial distribution of the dominant optical water types are shown in Figure 
8. It should be noted that these maps shows the dominant optical water type in each pixel, 
i.e. the most similar optical water type based on the spectral angle metric.  

From Figure 8 it appears clear that the optical water typology appropriately renders the 
transition between clear blue open waters (OWT 1), through moderately scattering coastal 
environments (OWT 6/9) to highly scattering environments in estuarine areas (OWT 10/11). 
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Figure 8: Mapping of the dominant optical water type for the North East Atlantic region on 19/06/2017. 

 
Figure 9: Example evolution of the dominant optical water type across the Bourgneuf Bay in June 2017. 

3.4.3. Algorithm selection, tuning, calibration and validation: 

Algorithms for all retrieved parameters are selected and tuned according to a partitioning of 
the spectral variability of the region by optical water typing. An initial example of tuning of 
both Chl-a and TSM algorithms was shown in Section 2. Here, we present a more advanced 
version of tuned TSM and turbidity algorithms, applied to each optical water type (OWT) are 
shown in Table 2. A similar exercise for Chl-a re-tuning will be required. Over 95% of the pixels 
assessed correspond to optical water types 1, 2, 6, 9 and 10 (Figure 10). 

 

 

b a 
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Table 2: Algorithms associated with each optical water type. N/A indicates that no points corresponding to this OWT 

are available in the calibration data set. 

Optical Water type Turbidity Algorithm TSM algorithm 

1 Nechad et al. (2009) @ 681 nm Tang et al. (2013) @ 681 

2 Nechad et al. (2009) @ 681 nm Tang et al. (2013) @ 560 

3 N/A N/A 

4 N/A N/A 

5 N/A N/A 

6 Nechad et al. (2009) @ 620 nm Nechad et al. (2009) @ 620 nm 

7 N/A N/A 

8 N/A N/A 

9 Nechad et al. (2009) @ 779 nm Zhang et al. (2014) @ 509 

10 Nechad et al. (2009) @ 779 nm Nechad et al. (2009) @ 779 nm 

11 N/A N/A 

12 N/A N/A 

 

 

 
Figure 10: Number of pixels corresponding to each optical water type between June to August 2019 (shown on a log 

scale). In total 18.4% of pixels are categorised, with the remainder discarded due to invalidity, land, or, most 

frequently, cloud. 

 
Table 3: Sources of data used for calibration/validation of TAPAS TSM and turbidity algorithms. 

Source Variables Num obs. Date start Date end 

CEFAS smart buoy 
data 

Coastal and open 
ocean TSM and 

turbidity 

TSM: 537,349 
TURB: 1,258,804 

01-01-2002 15-08-2018 

OC-CCI in situ record Coastal and open 
ocean TSM 

TSM: 6,451 02-01-1997 03-07-2012 

SEPA Estuarine turbidity TURB:1,207,950 01-01-2005 31-12-2017 

 

Algorithm calibration and validation was performed using data from the sources detailed in 
Table 3. These stations cover both coastal and offshore locations, ensuring relevance to the 
full suite of optical water types encountered in the region. The data set was split into two 
parts, with 25% of the initial points used to calibrate the relevant algorithms and the 
remaining data used for validation across the calibration period, to ensure that the calibration 
and validation data sets are independent calibration and validation points are selected so that 
they do not fall on the same day for the same datasets (giving at least one tidal cycle between 
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any calibration and validation point for each data set). Match-up extractions were performed 
using only the nearest image pixel, and with in situ data only +/- 30 minutes from the relevant 
overpass time. Pixel flags were applied, as recommended in Bailey and Werdell (2005), but, 
as significant spatial variability is to be expected in the coastal zone, no spatial averaging, or 
filtering by a coefficient of variation are performed (sic). The locations of the in situ match up 
points used for calibration/validation are shown in Figure 11. 
 

 
Figure 11: Locations of match-up points used in calibration and validation. 

The results of the algorithm calibration and validation for the TSM and turbidity retrieval 
algorithms are shown in Figure 12 and Figure 13, respectively. The middle panel in each figure 
shows the results of validation when only the dominant algorithm for each water type is used. 
The right hand panel shows the results for the case when the top 2 algorithms are blended 
together according to the fuzzy membership of the relevant spectra to each optical water 
type. This latter approach reduces the hard spatial boundaries between algorithms often 
associated with the classical switching approaches. 

 

 
 

Figure 12: (left) TSM calibration by optical water type algorithm. (centre) TSM validation by optical water type. 

(right) TSM validation for the blended algorithm. 
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Figure 13: As in Figure 12, but for turbidity. Note that, for consistency, where the optical water type suggests that 

one of the Nechad algorithms is used to derive TSM, the same algorithm is used to derive turbidity. This is because 

the Nechad algorithm dervies a value for TSM by applying a geometric factor to the retrieved turbidity. 

3.4.4. Limitations, recommendations for use and further evolution of the algorithm 

We note the following known limitations of the current approach: 

• Not all optical water types are represented in European waters, and not all optical water types 

of those identified in European waters have corresponding in situ match-up data. 

• If no matching satellite and in situ observations are available to select/tune an algorithm, then 

no TSM/turbidity can be retrieved for that optical water type. Since each pixel has a similarity 

score corresponding to each possible optical water type, a value will normally be reported for 

that pixel regardless of missing inputs, but likely with a higher associated uncertainty.  

• Uncertainties are calculated for each pixel. These are extracted from the residual of each 

algorithm regression against in situ data, and consequently, vary with retrieved concentration. 

Consequently, an incorrect assignment of an optical water type to a given pixel, and therefore 

a poor retrieval is likely to result in a high uncertainty.  

Product uncertainty is closely tied to the calibration and validation procedures: 
• Increased availability of in situ data over time is expected to expand the ability to retrieve 

water quality products for as-yet unassigned optical water types. 

• Beyond the initial validation exercise, which incorporated the MERIS are and first two years 

of the OLCI-A mission, a subsequent validation has been conducted. This secondary validation 

exercise assesses the performance of the turbidity algorithm over the July 2018 to June 2019 

period for both OLCI-A and OLCI-B. During this period, the performance of the blended 

products is not as strong as during the initial calibration/validation phase due to the lack of 

SVC gains for S3B and poorer quality control on the near-real time in situ data, as compared 

to the historical CEFAS SmartBuoy data used in the original exercise. However, the blended 

algorithm continues to outperform all other approaches. 

Users are strongly recommended to use the blended algorithm result, which removes 
unrealistic boundaries otherwise introduced by applying individual algorithms beyond their 
validated scope: 
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• The blended algorithms for both turbidity and TSM show improved performance over any 

single algorithm and as well as over using only the algorithm associated with just the dominant 

optical water type. 

• The blending process greatly reduces the spatial inhomogeneity associated with the use of 

any single algorithm. 

• Like the retrieved parameters themselves, the uncertainties are geometrically blended 

according to the scores of each pixel against each of the top-three performing algorithms. 

3.5. Output product 

The output data (product bands) are produced as variables in a NetCDF file. Variables include 
a band for each reflectance band, the derived chlorophyll-a and turbidity and the associated 
pixel uncertainty for each of these. Intermediary products are not distributed but are 
generally stored for product validation and improvement purposes. These include the specific 
outputs from individual algorithms (prior to mapping/blending) and processor-generated 
flags.  

Figure 14 shows an example OWT-blended TSM product for the North East Atlantic region for 
24/08/2019. The daily aggregated product retains a spatial resolution of 300 m can be used 
as the basis for time series extractions and statistical analysis of any subset region. A similar 
analysis is conducted for the Mediterranean Sea. 
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Figure 14: An example OWT blended, 3-day aggregated Total Suspended Matter product for 24-26 Aug 2019. 
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4. The S3 processing chain for Bourgneuf Bay (Water Insight) 

 

4.1. Background 

For Partner UN Water Insight has started a first Sentinel 3 OLCI processing chain for the area 

of Bourgneuf Bay to compare to their MERIS processing results. The area of Bourgneuf Bay is 

limited by the following bounding box: 

UL, 47.326 N, -2.535 E 

UR, 47.350 N, -1.748 E 

LR, 46.873 N, -1.7839 E 

LL, 46.867 N, -2.476 E 

The area and its aquaculture sites are already described in section 2.1. 

 
Figure 15:The Bourgneuf Bay study area 

WI has set up this processing chain as one of its first S3 processing services at the time, as S3 

was relatively new. 

 

4.2. S3 processing chain 

The WI processing chain consists of four steps: the automatic downloading, the atmospheric 

correction, the application of the water quality algorithms for chlorophyll-a, suspended 

particulate matter, and transparency (Kd) and the service delivery.  
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Sentinel 3 OLCI imagery was downloaded for the period between 27/01/2017 and 

13/10/2017 using the EUMETSAT's earth observation portal and a Water Insight automated 

downloading script.  

For atmospheric correction, the same correction was used as described above in chapter 3; 

the POLYMER v4.5 (Steinmetz et al 2011) method. The output bands contain the water 

reflectance (dimensionless, fully normalized for sun and sensor at nadir. The flagging of the 

invalid pixels (due to land, clouds etc) was done using the built-in flag mask called bitmask 

which is automatically calculated during the atmospheric correction. 

Chlorophyll and SPM water quality parameters were calculated using the algorithms below. 

• Novoa SPM According to Novoa et al 2017 

• GONS CHL According to Gons et al 2015 

• OC4ME CHL According to https://sentinels.copernicus.eu/web/sentinel/technical-

guides/sentinel-3-olci/level-2/oc4me-chlorophyll (Morel et al 2007 and O'Reilly et al 

1998 for a more general description of the algorithm) 

• Turbidity Nechad 665  

• Turbidity Nechad 754 

• Turbidity Nechad 865 

• Turbidity Nechad 1020 

These algorithms were selected as state-of-art algorithms suitable for the optical water types 

in the area. 

As discussed in section 2, UN used the MERIS results to quantitavely assess which type of 

regional algorithms perform best for aquaculture sites in Bourgneuf Bay. It is expected that 

updated regional algorithms could be applied to S3 (as the OLCI sensor is based on the MERIS 

sensor). The validation of S3 is still on-going as it requires in-situ measurements. The 

deployment of a turbidity and chlorophyll-a probe by UN has been delayed. A first trial of 

deployment at an offshore site was a failure due to a wrong move by the boat captain during 

the deployment of the instrument cage. The probe has been buried in the sediment, but we 

figured it out only months later when we retrieved the instrument. As a consequence, there 

is no in situ data concomitant with the S3 images processed by WI. Our in situ probe has been 

rescued, checked, re-calibrated, and eventually re-deployed in an intertidal oyster farming 

site, very recently. All analyses will therefore be performed after the official end of TAPAS. 
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5. Conclusions and recommendations  
The potential to use the Sentinel-3 OLCI instrument for monitoring water quality in 

aquaculture environments has been investigated. Atmospheric corrections processors have 

been compared and several retrieval algorithms were optimised (largely based on the 

performance of MERIS, the predecessor of OLCI). Based on validations results, the most 

suitable combinations of algorithms were selected for processing data sets of two test sites. 

The results are mostly positive: OLCI is capable of resolving the optical dynamics present in 

aquaculture environments. Atmospheric correction can be further improved, and algorithm 

validation is limited by available in situ data. The number of radiometric in situ observations 

for validation could be improved. 

The medium resolution satellite data can be used for improved spatial planning (e.g. site 

selection and characterisation), impact assessment and licencing, and enhanced monitoring 

e.g. for early warnings. Some tests for these purposes have already been performed. After 

the current work the high-resolution data is ready for testing the application in aquaculture 

tools at other aquaculture sites. 
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